
A Case for Two-stage Inference with Knowledge Caching
Geonha Park

KAIST
Daejeon, Republic of Korea

geonha@kaist.ac.kr

Changho Hwang
KAIST

Daejeon, Republic of Korea
chhwang@kaist.ac.kr

KyoungSoo Park
KAIST

Daejeon, Republic of Korea
kyoungsoo@kaist.ac.kr

ABSTRACT
Real-world intelligent services employing deep learning technology
typically take a two-tier system architecture – a dumb front-end
device and smart back-end cloud servers. The front-end device
simply forwards a human query while the back-end servers run a
complex deep model to resolve the query and respond to the front-
end device. While simple and effective, the current architecture not
only increases the load at servers but also runs the risk of harming
user privacy.

In this paper, we present knowledge caching, which exploits
the front-end device as a smart cache of a generalized deep model.
The cache locally resolves a subset of popular or privacy-sensitive
queries while it forwards the rest of them to back-end cloud servers.
We discuss the feasibility of knowledge caching as well as technical
challenges around deep model specialization and compression. We
show our prototype two-stage inference system that populates a
front-end cache with 10 voice commands out of 35 commands. We
demonstrate that our specialization and compression techniques
reduce the cached model size by 17.4x from the original model with
1.8x improvement on the inference accuracy.

CCS CONCEPTS
• Computing methodologies → Mobile agents; Neural net-
works; Speech recognition; • Computer systems organization
→ n-tier architectures; Embedded software; • Security and privacy
→ Privacy protections.

KEYWORDS
Neural networks; Embedded systems; Caching systems;

ACM Reference Format:
Geonha Park, Changho Hwang, and KyoungSoo Park. 2019. A Case for
Two-stage Inference with Knowledge Caching. In The 3rd International
Workshop on Deep Learning for Mobile Systems and Applications (EMDL’19),
June 21, 2019, Seoul, Republic of Korea. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3325413.3329789

1 INTRODUCTION
Recent breakthroughs in deep learning are rapidly changing the
lifestyle ofmodern homes. People now listen tomusic, check today’s

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EMDL’19, June 21, 2019, Seoul, Republic of Korea
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6771-4/19/06. . . $15.00
https://doi.org/10.1145/3325413.3329789

weather, or even set up an alarm through smart speakers [2, 6].
Recent smart refrigerators [8, 9] allow coordinating the schedule of
family members or sending a reminder of expiration of stocked food.
The demand for smart services is growing fast as the smart home
market is expected to reach $107 billion by 2023 with compound
annual growth rate (CAGR) of 9.5% [1].

Most of modern voice-based intelligent services take the cen-
tralized system architecture. A typical voice assistant wakes up
with a special activation command 1, and passes up voice queries
directly to a back-end cloud server. The back-end cloud server runs
a complex deep model that recognizes a request, processes it, and
sends a response back to the front-end device. This centralized
query resolution is advantageous in that it not only makes the front
device simple but also supports transparent enhancement of the
service as the back-end deep model gets mature over time.

Unfortunately, the centralized scheme also brings significant
drawbacks. First, even locally-executable queries that are popular
must be forwarded to back-end servers. This increases the load
at the back-end servers unnecessarily while it might impair the
interactivity with a latency blowup. Second, some queries carry
privacy-sensitive information that a user does not want to leak.
Most queries inevitably hold some private information due to per-
sonal usage. Some people may be OK with mildly-sensitive infor-
mation such as switching of TV channels, but few people may
want to leak privacy-critical information such as a specific type
of medicine kept in a smart refrigerator. Here, we ask a simple
question. Why not execute popular or privacy-sensitive queries
locally on a front-end device? 2

The solution to this problem is widely known in computer sys-
tems design, i.e., caching. A simple, static cache with pre-loaded
content might effectively address the problem. However, the central
challenge lies in how we apply caching to a complex deep learning
model. We refer to caching some features of a large deep model as
knowledge caching. More formally, given a large deep model that
handles a full query set of S with an average inference accuracy at
k , how can we build a specialized deep model that processes only a
subset of queries, Y (Y ⊂ S) with similar accuracy while it fits the
resource budget of a front-end device?

Answering the question turns out to be non-trivial as it requires
handling a number of challenges. The primary issue lies in the
construction of an effective deep model (DM) cache. To build a DM
cache, one might apply model specialization [11, 19, 21], a popular
technique that trains a model only on a subset of tasks. However,
model specialization raises two key problems: (a) given a query,
how does it determine a cache hit or a miss and (b) how do we adjust
the model size to run on a front-end device? The former focuses

1Like "Ok Google" or "Hello Alexa".
2Determining which queries should be executed locally is an open problem that we
leave as future work.

https://doi.org/10.1145/3325413.3329789
https://doi.org/10.1145/3325413.3329789

on the correctness of the DM cache – it must tell what query it can
answer, and what not, to avoid a wrong answer. In contrast, the
latter concerns the efficiency as specialization itself does not reduce
the model size. Second, a DM cache must be refreshed periodically
to reflect the change in query popularity or to support individual
needs for personalization. The key issue is how we minimize the
re-training cost for building a new DM cache per front-end device.
Third, we need to come upwith a general strategy for building a DM
cache. It would be nice to accommodate a variety of deep models
such as convolutional neural networks (CNNs) and recurrent neural
networks (RNNs).

In this paper, we discuss the challenges in knowledge caching,
and provide our own approach to handling them. In addition, we
present a prototype of a two-stage inference system that employs a
DM cache at a front-end device. Our preliminary evaluation shows
that a DM cache handling 28.6% of speech commands of a deep
model [10] would require a specialized model that is 17.4x smaller
than the original model while it improves the inference accuracy
by 1.8x. We find that the DM cache decreases the inference time
significantly by reducing the floating point operations by 17.3x.

2 OPPORTUNITIES & CHALLENGES
In this section, we discuss the opportunities for knowledge caching
and practical challenges down the road.

2.1 Opportunities
Without accurate statistics on real-world queries, it is difficult to
gauge the effectiveness of knowledge caching. Nevertheless, we dis-
cuss the potential for handling popular or privacy-sensitive queries
at front-end devices.
Popular queries. According to a survey in 2018 [18], over 20%
of the population in the U.S. already own a smart speaker while
the average number of daily queries is 2.8 times. Not surprisingly,
almost 80% of the queries are focused on top-7 categories 3 despite
over 70k skills offered by a popular smart speaker [17]. Handling
some of the popular query types on a front-end device would sig-
nificantly reduce the load at cloud servers while it improves the
user experience.
Private queries. According to the survey by PwC in 2018 [24],
about 28% of the respondents that do not own a voice assistant
express some concern about privacy. Given that voice assistants
are usually placed in private locations at homes like living rooms
(45.9%), kitchens (41.4%) or bedrooms (36.8%) [18] 4, one might
worry that they may overhear private conversation [12]. Careful
usage may mitigate the concern, but queries like "wake me up in
30 minutes" or "remind me of my schedule today" inevitably deal
with private information. If knowledge caching is employed, the
front-end device may be able to present an option to locally execute
a private query or not to forward it to cloud servers unless it is
granted by the user.
Computing capacity at front-end devices. A front-end device
must have enough compute capacity for executing a DM cache lo-
cally. Fortunately, the recent trend shows that front-end devices are

3Such as checking the weather, setting a timer/an alarm, controlling smart home
devices, listening to radio, asking for music, asking general questions, etc.
4The survey allows multiple responses.

0 5 10 15 20 25

N
u

m
b

er
 o

f
q

u
er

ie
s

Confidence

Target

Non-target

(a) Ordinary classification loss

0 5 10 15 20 25

N
u

m
b

er
 o

f
q

u
er

ie
s

Confidence

Target

Non-target

(b) Confident oracle loss

Figure 1: Confidence distributions of DM cache responses
for target and non-target queries for training ResNet-56
with two different loss functions for the CIFAR-10 dataset.
We use the Kullback-Leibler divergence of the output and
uniform vectors as the confidence of a response.

getting more powerful. Smartphones such as Samsung’s Galaxy S10
Plus [5] or Apple’s iPhone X [4] employ high-performance proces-
sors with tens of GBs of memory, often with a dedicated neural
network processors (NPUs) capable of handling 600 billion oper-
ations per second [4]. Other platforms like NVIDIA Jetson [7] or
Google’s AIY Edge TPU Boards [3] have an integrated CPU/GPU
package with a few GBs of memory, achieving 750.1 and 32 GFLOPS,
respectively. Given that a popular CNN model like ResNet-50 [15]
requires 3.8 GFLOPs for inference, modern front-end platforms
have enough capacity to offload some of machine learning tasks.

2.2 Challenges
Caching a subset of features of a complex deep model is a concep-
tually simple idea, but it presents a number of practical challenges.
The primary difficulty is that the object for caching is stochastic
computation rather than deterministic data accessed by a well-
defined key, typically seen in other caching systems. In this section,
we briefly summarize the issues and present our approach to tack-
ling them.
(a) Determining a cache miss. One reasonable approach for a
DM cache is to construct a specialized deep model trained for a
specific target subset of the entire training dataset. Fortunately,
specialized learning tends to enhance algorithmic performance (e.g.
accuracy) [11, 19, 21] as it reduces the search space of a training
algorithm. This property helps the DM cache to achieve high ac-
curacy even when we compress the model as in Section 2.2-(c).
However, one critical challenge is that a typical specialized model
is unable to tell non-target queries from target queries. This implies
that a DM cache cannot determine a cache miss even for a query
that has not been learned.

Consider a classification task with n classes, where the out-
put to a query is provided as a vector of scores for each class,
p = {p0,p1, · · · ,pn−1}. Given a query, the class with the largest
score in p is presented as the response. The conf idence of a re-
sponse refers to the level of assurance that the model provides, and
it is typically measured by the entropy [27] or Kullback-Leibler
divergence [21, 27] of the output vector. Higher confidence implies
that the model thinks its response is more likely to be correct. So, for
a non-target query, the model must express low confidence in the

0

2

4

6

8

1 2 3 4 5 6 7 8 9

E
rr

o
r

ra
te

 (
%

)

Number of target classes

ResNet-56

VGG-16

Figure 2: Error rates over varying numbers of target classes
per model. We use the ResNet-56 and VGG-16 models with
the CIFAR-10 dataset. Note that the error rate of a model
with one target class is exceptionally high due to over-
fitting.

response, where values of the output vector should be more or less
uniform. Unfortunately, a typical specialized model produces re-
sponses with high confidence even for non-target queries. Figure 1a
compares the distributions of confidence (measured in Kullback-
Leibler divergence 5) of target and non-target queries with the
ResNet-56 model [15] when we specialize it with 5 classes out of 10
total classes. It shows that even the responses to non-target queries
have high confidence similarly to those of target queries.
Our approach.We draw some insight from prior machine learning
literature that tackles the similar issue in different contexts, such
as regularization [14, 27], ensemble learning [21], and prevention
of adversarial attacks [22]. While prior works focus on enhancing
the accuracy and reducing the uncertainty of a model via handling
confidence, we leverage it to resolve a cache miss with a DM cache.
Specifically, we apply confident oracle loss [21] to a DM cache so
that it trains the model to minimize the confidence for non-target
queries. More specifically, at each training iterationwith a randomly
given training sample, we minimize ordinary classification loss (e.g.
cross-entropy loss) if the sample is from a target class, and if not,
we minimize DKL (unif{0,n − 1} | | p), where n is the number of
target classes and DKL is the Kullback-Leibler divergence, which
measures the confidence of p. Figure 1b shows that training with
confident oracle loss effectively reduces the confidence on non-
target queries. Note that training with confident oracle loss does
not affect the accuracy of the model for target queries, compared
with ordinary classification loss. This is because minimizing DKL
is stochastically equivalent to minimizing the classification loss of
a randomly-picked non-target sample. In fact, the test accuracy of
Figure 1a and Figure 1b is 4.58% and 4.56%, respectively.
(b) Avoidingmodel re-training. Cache eviction and replacement
in conventional caching systems is simple as they deal with fixed
data or deterministic computation for a cache item. However, cache
replacement of a DM cache (due to popularity change or for person-
alization) requires re-training of a deep model with a different set
of target queries. Model re-training not only incurs a long delay but
it also consumes considerable computation resources. Front-end
devices typically do not have enough resources for re-training nor

5A larger value represents higher confidence with 0 as the minimum.

Target classes 3 5 7 9
Error rate (%) 5.02 6.46 5.36 6.02

Max compression rate (%) 88 83 64 64

Table 1: Comparison of error rates and maximum compres-
sion rates over varying numbers of target classes per unit
model. VGG-16 model and CIFAR-10 dataset are used. Er-
ror rate of the general VGG-16 model is 6.60%. In case of
three target classes, the compression rate reached a theoret-
ical limit, so we could not reduce the model size further.

have convenient access to a large amount of training dataset. Fre-
quent re-training at back-end servers hardly scales as the number of
front-end devices increases (i.e. # of models for training increases).
Our approach.We consider a simple solution that requires only
one-time training cost. The idea is to leverage an ensemble of mul-
tiple unit models. First, we split n total classes intom (m ≤ n) class
groups so that each group has a set of co-related classes likely to
be required as a whole. Then, we train a specialized model for each
class group, which results inm unit models. We install the smallest
set of unit models that collectively cover the classes locally handled
on each front-end device. When a real query arrives, the front-end
device builds a response by averaging the scores from individual
unit models. If the confidence is uniformly small across the unit
models, the DM cache considers the query as a cache miss as it is
unlikely to be learned.

This approach raises one open issue – how do we compose class
groups? If each group has many classes, the number of unit models
for a DM cache could be made small. However, learning too many
classes per model may degrade the inference accuracy. For instance,
Figure 2 shows that a larger number of classes per unit model tends
to increase the error rate. In practice, the accuracy is affected by
the number of classes as well as the type of those a model learns.
So, a prudent strategy should leverage both prior knowledge and
careful analysis on the dataset. For simplicity, we assume that all
classes are independent of each other in this work, and focus only
on the number of classes to learn.
(c) Tailoring models to small devices. For practical deployment,
the size of a DM cache must fit the resource budget of a front-end
device while maintaining the inference accuracy comparable to
that of the original model. Having a small cache is important as the
size determines both the memory footprint as well as the inference
latency of a query. Unfortunately, employing an ensemble of m
unit models as a DM cache would end up with a size blowup bym
times. A compression scheme like filter pruning [23] may reduce
the model size, but its benefit is often not enough for a general
model – the size reduction without loss of accuracy is limited to
only 13.7% when we apply filter pruning to the ResNet-56 model
for the CIFAR-10 dataset without specialization.
Our approach. Interestingly, we observe that a specialized unit
model tends to compress much better with little degradation of
accuracy. Table 1 compares the maximum compression rates of a
unit model over varying numbers of target classes while keeping a
comparable error rate to the general model (i.e. # of target classes
is 10). All experiments use the VGG-16 model with the CIFAR-10

User

Back-end server

Infer with

DM cache

Yes

No

Response

Infer with

Generalized

deep model

Response

Cache miss

Cache hit

Query

Front-end device

High

Confidence?

Figure 3: Two-stage inference architecture with a DM cache

dataset, and each model is compressed via filter pruning after spe-
cialized training of a unit model. The results show that a unit model
specialized on a smaller number of classes compresses much better.
Also, beyond a certain number of classes, the compression rate
largely plateaus.

Based on the observation, we apply filter pruning to specialized
unit models while keeping the number of classes per model small.
After filter pruning, we optionally reduce the size of floating point
parameters from 32 bits to 16 bits, which achieves extra compression
at a small accuracy loss. Note that determining the number of classes
per model is closely related to the open issue of composing class
groups. If the value is too small, it would require training a large
number of unit models, and each DM cache would need more unit
models for an ensemble. If it is too large, the unit model may not
compress well while the ensemble of a DM cache may represent
classes not directly relevant to the cache. For now, we leave this
problem as our future work.
Generality and limitation of our approach. Our suggestions
so far (except model compression) are applicable to any supervised
learning tasks based on deep neural networks. We have verified that
our model specialization and ensemble inference work well with
various CNN-based tasks such as image classification [15, 30–32],
object detection [29], and speech commands recognition [10], and
a RNN-based task that recognizes hand-written Chinese charac-
ters [34]. Other learning tasks such as unsupervised learning [13,
28] or reinforcement learning [25] would require a different special-
ization technique as our current approach assumes class labeling
to tell target from non-target tasks. For model compression, we
have tried only filter pruning [23], generally applicable to CNN
models. We leave it as our future work to try out other compression
methods [26] to support neural networks beyond CNNs.

3 SYSTEM OVERVIEW
We build a simple prototype system that performs two-stage infer-
ence with a query. Figure 3 shows the overall architecture of our
system. The front-end device receives a query from a user and feeds
it to its DM cache consisting of multiple unit models. If the response
of the cache has higher confidence than a pre-defined threshold
(i.e. cache hit), the device executes the function associated with the
response (e.g., turning on TV after inferring the voice query, "Turn
on TV") and delivers the result to the user. In case of a cache miss,
the front-end device forwards the query to a back-end server, and
relays the result from a general deep model at the server to the user.

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

P
er

ce
n

ta
ge

 (
%

)

Threshold

False positive
False negative
Average

Figure 4: False positive and negative rates over varying confi-
dence thresholds. ResNet-56 model specialized on 5 classes
out of 10 total classes of the CIFAR-10 dataset. Validation
data consists of target and non-target classes of the same
size.

In this section, we present the process of building the two-stage
inference system step by step.

3.1 Offline Model Building
The first step for building the two-stage inference system is to train
a general deep model for back-end servers. Then, we train a set of
specialized unit models used as a building block for a particular
DM cache. So, we mainly focus on building the unit models here.
Arranging class groups. The admin needs to determine the num-
ber of class groups,m, considering co-related tasks and the model
size. Then, each unitmodel would have roughly ⌈n/m⌉ target classes
to specialize on. Determining the optimal value ofm is tricky as
a large value would increase the number of unit models per DM
cache, which may exceed the memory footprint budget. On the
other hand, too small a value ofm may increase the error rate of
each unit model. Our current strategy is to start with a reasonable
number of classes (e.g., 3-4) per unit model and allow some overlap
of classes over unit models. Then, we build a DM cache as an en-
semble of unit models and evaluate the accuracy and model size. If
it does not work out, then, we repeat the process with a different
number of per-model classes.
Training unit models. For specialized training of a unit model,
we start with a general deep model structure but train it with confi-
dence oracle loss. Then, we compress the trained model via filter
pruning, and fine-tune the model with distillation learning [16],
which helps improve the accuracy. We repeat this procedure until
we find the largest compression rate that produces comparable
accuracy to the general deep model. We employ binary search to
minimize the steps to find the optimal compression rate.
Fine-tuning via distillation learning.Model compression tends
to remove parameters with small values that are less likely to affect
overall computation results. However, it may also remove important
parameters that influence the final accuracy. This behavior can be
fixed via some extra training after compression called fine-tuning.
For fine-tuning in our system, we apply distillation learning [16]
with the general model. To goal of distillation learning is to inherit
the generalizability of a larger model to a smaller model, which
often enhances the accuracy of the latter. To apply it in the context
of specialized training, we slightly modify the training procedure.

6.89

0.18
0.73

27.98

19.93 18.50

0

5

10

15

20

25

30

0

2

4

6

8

One ResNet-56 One unit Ensemble 4

(float 16bit)

E
rr

o
r

ra
te

 (
%

)

M
o

d
el

 s
iz

e
(M

B
) Model size

Whole error rate

Figure 5: Comparison ofmodel sizes and error rates of a gen-
eralmodel (ResNet-56) vs. a DM cache (an ensemble of 4 unit
models).

If a training sample is from a target class, we first infer the sample
with the general model. If the response is correct, we minimize
classification loss of the unit model for both the ground truth la-
bel and the score vector returned from the general model. This
means that the unit model learns not only the ground truth but
also how the general model responds, only when the general model
returns a correct response. Otherwise, the training works the same
as described before in Section 2.2-(a).
Determining confidence threshold. As shown in Figure 4, a
higher confidence threshold reduces a false positive rate (i.e. wrong
cache hits) while it increases a false negative rate (i.e. wrong cache
misses). For balanced performance, we choose the confidence thresh-
old that minimizes the average of false positive and negative rates.
However, one can use a different value depending on the learning
task. For example, one can use a lower threshold to favor local
execution if the task is tolerant on occasional wrong responses.

3.2 Online Adjustment
Query preference of a user may change over time, which would
increase cache misses and reduces the effectiveness of the DM
cache. To detect query popularity change, the back-end servers
continuously monitor user queries by analyzing cache misses as
well as periodic reports from the front-end device. When cache
replacement is desirable, the back-end server builds and deploys an
ensemble of unit models that cover the new set of popular classes.

4 EXPERIMENTS WITH A DM CACHE
We present preliminary evaluations of our prototype system with
two workloads.
Feasibility testing. To test the feasibility of our system, we first
run an image classification benchmarkwith the ResNet-56model [15]
for the CIFAR-100 dataset [20].

Out of 100 total classes, we build a DM cache that handles 10
classes at a front-end device. First, we split 100 classes into 40 class
groups where each group specializes on 3 classes. Having an overlap
in learned classes over unit models tends to improve the accuracy,
so we arrange some classes (e.g., 20 classes) to be overlapped across
multiple unit models. To handle 10 classes at the front-end device,
we build an ensemble of 4 unit models, following the approach
described earlier. Beyond filter pruning, we also reduce the size of

Model type Size (MB) MFLOPs Error (%)
General 80.1 33.3 9.62
General (compressed) 26.1 10.9 13.63
DM cache (w/o DL) 4.6 1.9 5.93
DM cache (w/ DL) 4.6 1.9 5.57

Table 2: Comparison of the generalmodelwith theDMcache
for speech commands recognition. DL = Distillation learn-
ing. MFLOPs = Million floating point operations.

a floating point parameter from 32 bits to 16 bits. For experiments,
we feed the input queries of target and non-target classes with
an equal weight. For a target class query, we count the answer as
correct if the cache determines the query as cache hit and produces
a correct label for it. For a non-target class query, we count it as
correct only if the cache flags the query as cache miss.

Figure 5 compares the error rates and normalized model sizes.
Interestingly, the DM cache shows a 1.5x better error rate with
the aggregate model size 9.4x smaller than the general model. The
reasons for higher accuracy are two folds. First, the compression
rate already reaches a theoretical limit, so we could not reduce the
model size further. This means that the accuracy improvement is
achieved at the cost of a slightly larger model (9.4x instead of 10x
size reduction). Second, we find that the ensemble of unit models
improves the accuracy beyond what individual models achieve.
Speech commands recognition. We gauge the effectiveness of
our system with small-scale speech recognition. We implement a
CNN model for speech commands recognition of simple keywords
by referring to the implementation of TensorFlow tutorial [10]. We
use a small speech commands dataset [33] consisting of 35 differ-
ent keywords, and build a DM cache that handles only 10 speech
commands out of them. Our scenario is that these 10 commands
are locally executable on a front-end device while the rest of 25
commands should be forwarded to the back-end cloud servers.

Table 2 shows that our target-aware specialization and filter
pruning effectively reduce the model size by 17.4x and 5.7x from
the original and compressed models, achieving higher accuracy
in classification. We suspect that the higher accuracy stems from
the fact that the DM cache regularizes the model better. We find
distillation learning brings extra improvement of accuracy by 0.36%.

5 CONCLUSION
In this paper, we have presented the feasibility of knowledge caching
as a two-stage model inference system. To the best of our knowl-
edge, this work presents the concept of caching a select features
of an arbitrary deep model for the first time. We find that a deep
model cache at a front-end device is often desirable for executing
popular or private operations, and we have discussed a number
of challenges in building an effective deep model cache. We be-
lieve target-aware model specialization as well as an ensemble of
compressed unit models would be a reasonable first step towards
constructing a model cache.

ACKNOWLEDGMENTS
We appreciate the feedback by anonymous reviewers of EMDL’19,
and thank Celso Moraes for early discussion on knowledge caching.
This work is in part supported by the ICT Research and Develop-
ment Program of MSIP/IITP, Korea, under projects, [2016-0-00563,
Research on Adaptive Machine Learning Technology Development
for Intelligent Autonomous Digital Companion] and [2015-0-00590,
High Performance Big Data Analytics Platform Performance Accel-
eration Technologies Development].

REFERENCES
[1] 2018. Smart Home Market Report: Trends, Forecast and Competitive Analysis.

Technical Report. Lucintel, 8951 Cypress Waters Blvd., Suite 160, Dallas.
[2] 2019. Echo & Alexa - Amazon Devices. Retrieved April 10, 2019 from https:

//www.amazon.com/Amazon-Echo-And-Alexa-Devices/b?node=9818047011
[3] 2019. Edge TPU – Run Inference at the Edge. Retrieved April 10, 2019 from

https://cloud.google.com/edge-tpu/
[4] 2019. The future is here: iPhone X. Retrieved April 10, 2019 from https:

//www.apple.com/newsroom/2017/09/the-future-is-here-iphone-x/
[5] 2019. Galaxy S10 Performance. Retrieved April 10, 2019 from https://www.

samsung.com/us/mobile/galaxy-s10/performance/
[6] 2019. Google Home. Retrieved April 10, 2019 from https://store.google.com/

product/google_home
[7] 2019. High Performance AI at the Edge | NVIDIA Jetson TX2. Retrieved

April 10, 2019 from https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems/jetson-tx2/

[8] 2019. LG Smart Refrigerators: Powered by SmartThinQ IOT. Retrieved April 10,
2019 from https://www.lg.com/us/discover/smartthinq/refrigerators

[9] 2019. Samsung Family Hub Smart Refrigerator. Retrieved April 10, 2019 from
https://www.samsung.com/us/explore/family-hub-refrigerator/refrigerator/

[10] 2019. TensorFlow audio recognition tutorial. Retrieved April 10, 2019 from
https://www.tensorflow.org/tutorials/sequences/audio_recognition

[11] Grigory Antipov, Moez Baccouche, Sid-Ahmed Berrani, and Jean-Luc Dugelay.
2016. Apparent Age Estimation from Face Images Combining General and
Children-Specialized Deep Learning Models. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops.

[12] Katie Canales. 2018. A couple says that Amazon’s Alexa recorded a private con-
versation and randomly sent it to a friend. Retrieved April 10, 2019 from https://
www.businessinsider.com/amazon-alexa-records-private-conversation-2018-5

[13] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. 2014. Generative
Adversarial Nets. In Advances in Neural Information Processing Systems (NIPS).

[14] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. 2017. On Calibration
of Modern Neural Networks. In International Conference on Machine Learning
(ICML).

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[16] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the Knowl-
edge in a Neural Network. CoRR abs/1503.02531.

[17] Bret Kinsella. 2018. There are Now More Than 70,000 Alexa Skills Worldwide,
Amazon Announces 25 Top Skills of 2018. Retrieved April 10, 2019 from
https://bit.ly/2VLyqJ9

[18] Bret Kinsella and Ava Mutchler. 2018. Smart Speaker Consumer Adoption Report.
Retrieved April 10, 2019 from https://voicebot.ai/wp-content/uploads/2018/10/
voicebot-smart-speaker-consumer-adoption-report.pdf

[19] Morten Kolbæk, Zheng-Hua Tan, and Jesper Jensen. 2017. Speech Intelligibility
Potential of General and Specialized Deep Neural Network Based Speech En-
hancement Systems. IEEE/ACM Transactions on Audio, Speech, and Language
Processing 25, 1, 149–163.

[20] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features
from tiny images. Master’s thesis. Department of Computer Science, University
of Toronto.

[21] Kimin Lee, Changho Hwang, KyoungSoo Park, and Jinwoo Shin. 2017. Confi-
dent Multiple Choice Learning. In International Conference on Machine Learning
(ICML).

[22] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. 2018. A Simple Unified
Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks.
In Advances in Neural Information Processing Systems (NIPS).

[23] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. 2017.
Pruning Filters for Efficient ConvNets. In International Conference on Learning
Representations (ICLR).

[24] Mark McCaffrey, Paige Hayes, Jason Wagner, and Matt Hobbs. 2018. Consumer
Intelligence Series: Prepare for the voice revolution. Technical Report.

[25] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. 2013. Playing Atari
with Deep Reinforcement Learning. CoRR abs/1312.5602.

[26] Sharan Narang, Greg Diamos, Shubho Sengupta, and Erich Elsen. 2017. Exploring
Sparsity in Recurrent Neural Networks. In International Conference on Learning
Representations (ICLR).

[27] Gabriel Pereyra, George Tucker, Jan Chorowski, Lukasz Kaiser, and Geoffrey E.
Hinton. 2017. Regularizing Neural Networks by Penalizing Confident Output
Distributions. In International Conference on Learning Representations (ICLR).

[28] Alec Radford, Luke Metz, and Soumith Chintala. 2016. Unsupervised Represen-
tation Learning with Deep Convolutional Generative Adversarial Networks. In
International Conference on Learning Representations (ICLR).

[29] Joseph Redmon and Ali Farhadi. 2018. YOLOv3: An Incremental Improvement.
CoRR abs/1804.02767.

[30] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. FaceNet: A
unified embedding for face recognition and clustering. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[31] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In International Conference on Learning
Representations (ICLR).

[32] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. 2015. Going deeper with convolutions. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[33] Pete Warden. 2018. Speech Commands: A Dataset for Limited-Vocabulary Speech
Recognition. CoRR abs/1804.03209.

[34] Xu-Yao Zhang, Fei Yin, Yan-Ming Zhang, Cheng-Lin Liu, and Yoshua Bengio.
2018. Drawing and Recognizing Chinese Characters with Recurrent Neural
Network. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
40, 4, 849–862.

https://www.amazon.com/Amazon-Echo-And-Alexa-Devices/b?node=9818047011
https://www.amazon.com/Amazon-Echo-And-Alexa-Devices/b?node=9818047011
https://cloud.google.com/edge-tpu/
https://www.apple.com/newsroom/2017/09/the-future-is-here-iphone-x/
https://www.apple.com/newsroom/2017/09/the-future-is-here-iphone-x/
https://www.samsung.com/us/mobile/galaxy-s10/performance/
https://www.samsung.com/us/mobile/galaxy-s10/performance/
https://store.google.com/product/google_home
https://store.google.com/product/google_home
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://www.lg.com/us/discover/smartthinq/refrigerators
https://www.samsung.com/us/explore/family-hub-refrigerator/refrigerator/
https://www.tensorflow.org/tutorials/sequences/audio_recognition
https://www.businessinsider.com/amazon-alexa-records-private-conversation-2018-5
https://www.businessinsider.com/amazon-alexa-records-private-conversation-2018-5
https://bit.ly/2VLyqJ9
https://voicebot.ai/wp-content/uploads/2018/10/voicebot-smart-speaker-consumer-adoption-report.pdf
https://voicebot.ai/wp-content/uploads/2018/10/voicebot-smart-speaker-consumer-adoption-report.pdf

	Abstract
	1 Introduction
	2 Opportunities & Challenges
	2.1 Opportunities
	2.2 Challenges

	3 System Overview
	3.1 Offline Model Building
	3.2 Online Adjustment

	4 Experiments with a DM Cache
	5 Conclusion
	Acknowledgments
	References

